Paper 1, Section I,
Define the Hermitian conjugate of an complex matrix . State the conditions (i) for to be Hermitian (ii) for to be unitary.
In the following, and are complex matrices and is a complex -vector. A matrix is defined to be normal if .
(a) Let be nonsingular. Show that is unitary if and only if is normal.
(b) Let be normal. Show that if and only if .
(c) Let be normal. Deduce from (b) that if is an eigenvector of with eigenvalue then is also an eigenvector of and find the corresponding eigenvalue.
Typos? Please submit corrections to this page on GitHub.