Paper 1, Section II, FAnalysis I | Part IA, 2009For each of the following series, determine for which real numbers xxx it diverges, for which it converges, and for which it converges absolutely. Justify your answers briefly.(a) ∑n⩾13+(sinx)nn(sinx)n\sum_{n \geqslant 1} \frac{3+(\sin x)^{n}}{n}(\sin x)^{n}∑n⩾1n3+(sinx)n(sinx)n,(b) ∑n⩾1∣sinx∣n(−1)nn\quad \sum_{n \geqslant 1}|\sin x|^{n} \frac{(-1)^{n}}{\sqrt{n}}∑n⩾1∣sinx∣nn(−1)n,(c)∑n⩾1sin(0.99sin(0.99…sin(0.99x)…))⏟n times .\sum_{n \geqslant 1} \underbrace{\sin (0.99 \sin (0.99 \ldots \sin (0.99 x) \ldots))}_{n \text { times }} .n⩾1∑n times sin(0.99sin(0.99…sin(0.99x)…)).Typos? Please submit corrections to this page on GitHub.