# 1.II $. 5 B \quad$

(a) Use suffix notation to prove that

$\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

Hence, or otherwise, expand (i) $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})$, (ii) $(\mathbf{a} \times \mathbf{b}) \cdot[(\mathbf{b} \times \mathbf{c}) \times(\mathbf{c} \times \mathbf{a})]$.

(b) Write down the equation of the line that passes through the point a and is parallel to the unit vector $\hat{\mathbf{t}}$.

The lines $L_{1}$ and $L_{2}$ in three dimensions pass through $\mathbf{a}_{1}$ and $\mathbf{a}_{2}$ respectively and are parallel to the unit vectors $\hat{\mathbf{t}}_{1}$ and $\hat{\mathbf{t}}_{2}$ respectively. Show that a necessary condition for $L_{1}$ and $L_{2}$ to intersect is

$\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right) \cdot\left(\hat{\mathbf{t}}_{1} \times \hat{\mathbf{t}}_{2}\right)=0$

Why is this condition not sufficient?

In the case in which $L_{1}$ and $L_{2}$ are non-parallel and non-intersecting, find an expression for the shortest distance between them.