1.I.3F
Define the supremum or least upper bound of a non-empty set of real numbers.
Let denote a non-empty set of real numbers which has a supremum but no maximum. Show that for every there are infinitely many elements of contained in the open interval
Give an example of a non-empty set of real numbers which has a supremum and maximum and for which the above conclusion does not hold.
Typos? Please submit corrections to this page on GitHub.