3.I.3C

Vector Calculus | Part IA, 2004

If F\mathbf{F} and G\mathbf{G} are differentiable vector fields, show that

(i) ×(F×G)=F(G)G(F)+(G)F(F)G\boldsymbol{\nabla} \times(\mathbf{F} \times \mathbf{G})=\mathbf{F}(\boldsymbol{\nabla} \cdot \mathbf{G})-\mathbf{G}(\boldsymbol{\nabla} \cdot \mathbf{F})+(\mathbf{G} \cdot \boldsymbol{\nabla}) \mathbf{F}-(\mathbf{F} \cdot \boldsymbol{\nabla}) \mathbf{G},

(ii) (FG)=(F)G+(G)F+F×(×G)+G×(×F)\boldsymbol{\nabla}(\mathbf{F} \cdot \mathbf{G})=(\mathbf{F} \cdot \boldsymbol{\nabla}) \mathbf{G}+(\mathbf{G} \cdot \boldsymbol{\nabla}) \mathbf{F}+\mathbf{F} \times(\boldsymbol{\nabla} \times \mathbf{G})+\mathbf{G} \times(\boldsymbol{\nabla} \times \mathbf{F}).

Typos? Please submit corrections to this page on GitHub.