(i) Show that if an>0,bn>0 and
anan+1⩽bnbn+1
for all n⩾1, and if ∑n=1∞bn converges, then ∑n=1∞an converges.
(ii) Let
cn=(2nn)4−n.
By considering logcn, or otherwise, show that cn→0 as n→∞.
[Hint: log(1−x)⩽−x for x∈(0,1).]
(iii) Determine the convergence or otherwise of
n=1∑∞(2nn)xn
for (a) x=41, (b) x=−41.