3.I.1A
The mapping of into itself is a reflection in the plane . Find the matrix of with respect to any basis of your choice, which should be specified.
The mapping of into itself is a rotation about the line through , followed by a dilatation by a factor of 2 . Find the matrix of with respect to a choice of basis that should again be specified.
Show explicitly that
and explain why this must hold, irrespective of your choices of bases.
Typos? Please submit corrections to this page on GitHub.