Write down an expression for the Jacobian J of a transformation
(x,y,z)→(u,v,w)
Use it to show that
∫Dfdxdydz=∫Δϕ∣J∣dudvdw
where D is mapped one-to-one onto Δ, and
ϕ(u,v,w)=f(x(u,v,w),y(u,v,w),z(u,v,w))
Find a transformation that maps the ellipsoid D,
a2x2+b2y2+c2z2⩽1
onto a sphere. Hence evaluate
∫Dx2dxdydz