3.II.5E

Algebra and Geometry | Part IA, 2002

Prove, using the standard formula connecting δij\delta_{i j} and ϵijk\epsilon_{i j k}, that

a×(b×c)=(ac)b(ab)c\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}

Define, in terms of the dot and cross product, the triple scalar product [a, b, c ]] of three vectors a,b,c\mathbf{a}, \mathbf{b}, \mathbf{c} in R3\mathbb{R}^{3} and show that it is invariant under cyclic permutation of the vectors.

Let e1,e2,e3\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} be a not necessarily orthonormal basis for R3\mathbb{R}^{3}, and define

e^1=e2×e3[e1,e2,e3],e^2=e3×e1[e1,e2,e3],e^3=e1×e2[e1,e2,e3].\hat{\mathbf{e}}_{1}=\frac{\mathbf{e}_{2} \times \mathbf{e}_{3}}{\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]}, \quad \hat{\mathbf{e}}_{2}=\frac{\mathbf{e}_{3} \times \mathbf{e}_{1}}{\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]}, \quad \hat{\mathbf{e}}_{3}=\frac{\mathbf{e}_{1} \times \mathbf{e}_{2}}{\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]} .

By calculating [e^1,e^2,e^3]\left[\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3}\right], show that e^1,e^2,e^3\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3} is also a basis for R3\mathbb{R}^{3}.

The vectors e^1,e^2,e^3\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3} are constructed from e^1,e^2,e^3\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3} in the same way that e^1,e^2,e^3\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3} are constructed from e1,e2,e3\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}. Show that

e^1=e1,e^^2=e2,e^3=e3,\hat{\mathbf{e}}_{1}=\mathbf{e}_{1}, \hat{\hat{\mathbf{e}}}_{2}=\mathbf{e}_{2}, \hat{\mathbf{e}}_{3}=\mathbf{e}_{3},

Show that a vector V\mathbf{V} has components Ve^1,Ve^2,Ve^3\mathbf{V} \cdot \hat{\mathbf{e}}_{1}, \mathbf{V} \cdot \hat{\mathbf{e}}_{2}, \mathbf{V} \cdot \hat{\mathbf{e}}_{3} with respect to the basis e1,e2,e3\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}. What are the components of the vector V\mathbf{V} with respect to the basis e^1,e^2,e^3\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3} ?

Typos? Please submit corrections to this page on GitHub.