1.II.6B

(a) Suppose that $g$ is a Möbius transformation, acting on the extended complex plane. What are the possible numbers of fixed points that $g$ can have? Justify your answer.

(b) Show that the operation $c$ of complex conjugation, defined by $c(z)=\bar{z}$, is not a Möbius transformation.

*Typos? Please submit corrections to this page on GitHub.*