3.II.7A

Algebra and Geometry | Part IA, 2002

Explain why the number of solutions xR3\mathbf{x} \in \mathbb{R}^{3} of the simultaneous linear equations Ax=bA \mathbf{x}=\mathbf{b} is 0,1 or infinite, where AA is a real 3×33 \times 3 matrix and bR3\mathbf{b} \in \mathbb{R}^{3}. Let α\alpha be the mapping which AA represents. State necessary and sufficient conditions on b\mathbf{b} and α\alpha for each of these possibilities to hold.

Let AA and BB be 3×33 \times 3 matrices representing linear mappings α\alpha and β\beta. Give necessary and sufficient conditions on α\alpha and β\beta for the existence of a 3×33 \times 3 matrix XX with AX=BA X=B. When is XX unique?

Find XX when

A=(411121031),B=(111010312)A=\left(\begin{array}{lll} 4 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 1 \end{array}\right), \quad B=\left(\begin{array}{lll} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 3 & 1 & 2 \end{array}\right)

Typos? Please submit corrections to this page on GitHub.