4.II.8E
What is the Principle of Mathematical Induction? Derive it from the statement that every non-empty set of positive integers has a least element.
Prove, by induction on , that for all .
What is wrong with the following argument?
"Theorem: .
Proof: Assume that and . Add to both sides to get
So, by induction, the theorem is proved."
Typos? Please submit corrections to this page on GitHub.