1.I.2C

Define what is meant by the statement that the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{m}$ are linearly independent. Determine whether the following vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in \mathbb{R}^{3}$ are linearly independent and justify your answer.

$\mathbf{x}_{1}=\left(\begin{array}{l} 1 \\ 3 \\ 2 \end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l} 2 \\ 4 \\ 0 \end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{c} -1 \\ 0 \\ 4 \end{array}\right)$

For the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ taken from a real vector space $V$ consider the statements A) $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly dependent, B) $\exists \alpha, \beta, \gamma \in \mathbb{R}: \alpha \mathbf{x}+\beta \mathbf{y}+\gamma \mathbf{z}=\mathbf{0}$, C) $\exists \alpha, \beta, \gamma \in \mathbb{R}$, not all $=0: \alpha \mathbf{x}+\beta \mathbf{y}+\gamma \mathbf{z}=\mathbf{0}$, D) $\exists \alpha, \beta \in \mathbb{R}$, not both $=0: \mathbf{z}=\alpha \mathbf{x}+\beta \mathbf{y}$, E) $\exists \alpha, \beta \in \mathbb{R}: \mathbf{z}=\alpha \mathbf{x}+\beta \mathbf{y}$, F) $\nexists$ basis of $V$ that contains all 3 vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$.

State if the following implications are true or false (no justification is required): i) $\mathrm{A} \Rightarrow \mathrm{B}$, vi) $\mathrm{B} \Rightarrow \mathrm{A}$, ii) $\mathrm{A} \Rightarrow \mathrm{C}$, vii) $\mathrm{C} \Rightarrow \mathrm{A}$, iii) $\mathrm{A} \Rightarrow \mathrm{D}$, viii) $\mathrm{D} \Rightarrow \mathrm{A}$, iv) $\mathrm{A} \Rightarrow \mathrm{E}$, ix) $\mathrm{E} \Rightarrow \mathrm{A}$, v) $\mathrm{A} \Rightarrow \mathrm{F}$, x) $\quad \mathrm{F} \Rightarrow \mathrm{A}$.